\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (ECE: CBCS) III-Semester Main Examinations, December-2018

Networks Analysis

Time: 3 hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

3. State Thevenin's and Norton's theorems and also write their limitations
4. State Maximum Power transfer theorem.
5. Write the procedure to evaluate the initial conditions of during the transient analysis of circuits.
6. Differentiate between Zero Input Response (ZIR) and Complete Response.
7. Draw the equivalent circuit of a two-port network in terms Y -parameters and g parameters.
8. Find Admittance parameters of the circuits given below:

9. List the properties of Positive Real Functions.
10. Check whether the given polynomial $P(S)=S^{5}+7 S^{4}+6 S^{3}+9 S^{2}+8 S$ is Hurwitz or not

Part-B $(5 \times 8=40 \mathrm{Marks})$
11. a) For the circuit shown in figure, find the values of all mesh currents using mesh analysis.

b) Compare and contrast Tie-Set and Cut-Set in all respects.

M	L	CO	PO
2	2	1	2
2	2	1	3
2	2	2	2
2	2	2	2
2	2	3	2
2	2	3	2
2	2	4	2
2	2	4	3
2	2	5	2
2	2	5	3
5	3	1	3
3	2	1	2

a) Applying Super-position theorem, compute current I in the circuit shown in figure below:

b) Derive the condition of reciprocity for hybrid-Parameters.
13. a) The circuit shown in figure the switch ' S ' is moved from position A to position B at $t=0$. Determine current through inductor $i_{L}(t)$ for all t.

b) Describe the nature of roots for an RLC circuit along with neat sketches.
14. a) Analyze the given two-port network and evaluate the Z-parameters for the network shown below:

b) Formulate Transmission parameters in terms of Z -parameters.
15. a) Synthesize the impedance function $Z(S)=\frac{2 S^{5}+12 S^{3}+16 S}{S^{4}+4 S^{2}+3}$ using Cauer form-I.
b) Synthesize the impedance function $Z(S)=\frac{S+2}{(S+1)(S+3)}$ in Foster form-II.
16. a) For the circuit shown below:
i) Draw the directed network graph ii) obtain the equilibrium equations using KVL
iii) Calculate loop currents using Tie-set analysis.

b) By analyzing the circuit given, verify Tellegen's theorem.

17. Answer any two of the following:
a) Analyze the circuit given and evaluate the following:
i) $\mathrm{i}_{\mathrm{C}}(0+)$
ii) $i_{L}(0+)$
iii) $\mathrm{v}_{\mathrm{C}}(0+)$
iv) $i_{R}(0+)$

b) If the networks are interconnected in series-parallel manner, 'the overall h-parameters are the summation of individual h-parameters of the networks interconnected- Justify.
c) In a series RLC circuit, if the applied voltage is 10 V , What is the voltage across the inductor if the resonance frequency is 1 khz and $\mathrm{Q}=10$.

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	53.75
2	Knowledge on application and analysis (Level-3 \& 4)	36.25
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	10

